Performance Comparison of Devanagari Handwritten Numerals Recognition
نویسندگان
چکیده
In this paper an automatic recognition system for isolated Handwritten Devanagari Numerals is proposed and compared the recognition rate with different classifier. We presented a feature extraction technique based on recursive subdivision of the character image so that the resulting sub-images at each iteration have balanced numbers of foreground pixels as possible. Database, provided by Indian Statistical Institute, Kolkata, have 22547 grey scale images written by 1049 persons and obtained 98.98% highest accuracy with SVM classifier. Results are compared with KNN and Quadratic classifier. General Terms Pattern Recognition, Classification, Preprocessing
منابع مشابه
Handwritten Devanagari Numeral Recognition by Fusion of Classifiers
The abstract is to Recognition of handwritten Devanagari numerals has many applications especially in the field of postal automation, document processing and so on. Due to its vast applications, many researchers are actively working towards development of effective and efficient hand written character/numeral recognition. Devanagari script is widely used script in Indian sub-continent, also dev...
متن کاملPrinted and Handwritten Character &Number Recognition of Devanagari Script using SVM and KNN
Recognition of Devanagari scripts is challenging problems. In Optical Character Recognition [OCR], a character or symbol to be recognized can be machine printed or handwritten characters/numerals. There are several approaches that deal with problem of recognition of numerals/character. In this paper we have compared SVM and KNN on handwritten as well as on printed character and numerical databa...
متن کاملRecognition of Devanagari Handwritten Numerals using Two Different Approaches
This paper proposes two methods for automatic recognition of Handwritten Devanagari Numerals. In first method, Grid features i.e. structural features are extracted and minimum distance is calculated using these features for classification. In second method, ICZ (Image Centroid Zone) & ZCZ (Zone Centroid Zone) features based on distance information are extracted and given to an already trained N...
متن کاملOptical Character Recognition for Isolated Offline Handwritten Devanagari Numerals Using Wavelets
This paper presents a method of recognition of isolated offline handwritten Devanagari numerals using wavelets and neural network classifier. This method of optical character recognition takes the handwritten numeral image as input. After pre-processing, it is subjected to single level wavelet decomposition using Daubechies-4 wavelet filter. This wavelet decomposition allows viewing the input n...
متن کاملRecognition of Devanagari Handwritten Numerals using Gradient Features and SVM
Recognition of Indian languages is a challenging problem. In Optical Character Recognition (OCR), acharacter or symbol to be recognized can be machine printed or handwritten characters/numerals. Several approaches in the past have been proposed that deal with problem of recognition of numerals/character depending on the type of feature extracted and way of extracting them. In this paper also a ...
متن کامل